您的位置首页  网络科技  前端

HDMI前端设计与实现

  功能。首先对高清多媒体接口的整体信道传输过程进行了分析和分解,并阐述了三个数据周期传输时间及其

  在过去相当长的一段时间,CRT(Cathode Ray Tube)为代表的模拟显示设备主导了整个显示设备市场。随着高清视频格式(720p/1080i/1080p)的确定,液晶电视、等离子电视等大尺寸数字化平板显示设备的发明和普及,传统模拟接口易受电磁干扰、传输速率低、带宽小、传输损耗大等缺点已经不能满足海量数据流传输等需求;同时,影视等行业对版权意识越来越重视,数据传输的加密变得愈发重要,传输更快更安全的全数字化接口代替模拟接口成为必然趋势。于是第一个行业支持的、无压缩的、全数字的音视频接口 HDMI诞生了。

  HDMI具有体积小、抗干扰强、兼容性好、智能连接、单线缆同时传输无压缩音视频等优势。因此,它已被广泛地应用到DVD、机顶盒等设备中,HDMI正在成为高清时代普及率最高、用途最广泛的数字接口。

  HDMI系统架构由信源端和接收端组成。如图1所示,HDMI提供四个独立的TMDS(Transition Minimized Differential Signaling)通信通道:三个数据信道和一个时钟信道,这些信道主要用于传递视频、音频和辅助数据。另外,HDMI提供一个VESADDC(Video Electronics Standards Association)(Display Data Channel)信道。DDC是用于配置和在一个单独的信源端和一个单独的接收端交换状态,读取接收端的E-EDID数据结构。CEC(Consumer Electronics Control)是一个可选信道,可选择在用户的各种不同的音视频产品中,为高端用户提供高水平的控制功能。可选择的HDMI以太网和音频返回(HEAC),在连接的设备中提供以太网兼容的网络数据和一个和TMDS相对方向的音频返回信道。

  音频,视频和辅助数据都是在三个TMDS数据信道中相互交错传输。TMDS时钟,即视频像素速率传输时钟,在TMDS时钟信道中传输,它被接收端三个 TMDS信道作为一个频率参考,用于对三个TMDS数据信道的数据复原。在信源端,TMDS编码将每个TMDS数据的8bits数据转换成10bits的 DC-balanced数据,10bits的DC-balanced数据将以每个TMDS时钟周期串行地在差分线对上进行传输。

  视频数据像素时钟的TMDS时钟上传递默认值为24位色深,视频数据还兼容30,36,48位像素的数据。更高的色深使用需要相应的更高的TMDS时钟率。视频格式TMDS时钟率低于25M可以运用像素复用发送的策略来进行传输。视频像素支持多种编码格式,可以是 RGB,YCbCr4:4:4,YCbCr4:2:2格式编码。

  TMDS信道传输音频和辅助数据中,HDMI的信源端需要采取用包的格式来保证传输。为了保证音频和控制信号的高保真度,音频和辅助数据数据需要BCH纠错码的编码方式,且采取了一种10bits减少错误编码的特殊编码方式。基本的音频传输功能几乎包括所有的普通的立体声音频,在采样频率分别为 32KHz,44.1KHz和48KHz情况下的IEC60958LPCM音频流。HDMI还可以传输采样频率高达192KHz,采用3到8个音频通道的音频流。HDMI同样可以传输采样频率高达24.576MHz的IEC61937压缩音频。HDMI同样可以传输28通道的OneBit音频或者是一种被称为DST的压缩的One Bit音频。

  数据岛周期采用TMDS纠错编码(TERC4)的编码方式,每个4bits传输信道进行编码,三个传输信道共12bits数据。

  控制周期采用最大化传输编码的编码方式,对每个2bits传输信道进行编码,三个传输信道共6bits。这6bits数据包括HSYNC、VSYNC、CTL0、CTL1、CTL2、CTL3。在每个控制周期的末尾有一个报文头,使用CTLx bits数据组成的preamble,指示下一个数据周期是视频周期还是数据岛周期。

  TX(信源端)发射模块,包括时钟模块(由Timing和Timing_dly两个模块组成)、以及编码模块。时钟模块主要为视频音频交错相传产生时钟,编码模块实现对视频音频数据编码传输。

  cnt:计算编码数据中0和1个数的差值。若cnt为正值表示发送1的数量超过0的数量,负值则表示发送0的数量多于1的数量。cnt{t-1}表示相对于输入数据的前一个周期的cnt的值,cnt{t}表示本周期的值。

  模块较容易实现,只需依据preamble控制位判断接下来传输的数据类型,即音频或视频数据,然后解码即可。解码同样分两个阶段,如图5所示,第一阶段由10bits数据转为9bits数据,第二阶段由9bits数据转为8bits数据。

  在HDMI功能验证采用分层验证法,根据Spec1.4的编码解码的要求,制定验证计划,设计各种激励,实现近百分之百的覆盖率。本文运用的工具是Cadence NCVerilog,文中介绍部分验证计划,以及验证的结果。

  3.1 时钟模块的功能仿线要求,给定仿真必需激励信号,仿真数据岛周期及视频数据周期的每个像素时钟的功能分布是否符合Spec1.4的要求。比如验证ctl[3:0]的正确性,如图4所示,在3个blanking、8个preamble、2个leading guard band的时钟周期之后,进入下一个状态,ctl[3:0]的值与状态所表示的值对比便可验证。

  把时钟模块和encoder模块整合成TX模块,其中encoder模块分别实例为Encdr、Encdg、Encdb三个信道的编码模块。将TX和RX模块,即hdmi_encoder和hdmi_decoder,组合在一起仿线所示,输入的音频、视频数据用random函数随机产生,且在固定的时间周期输入,将输出与输入对比,得出HDMI整个编解码模块是否正确。

  进入21世纪,在带宽、音频、传输安全等方面具有优越性的HDMI的出现,满足了数字高清时代海量数据流传输的需求。本设计运用 verilog HDL实现HDMI编码及解码功能,通过写仿真测试激励及运用NCVerilog工具仿真代码逻辑的正确性。从子模块、模块、系统仿真验证自底向上的方法来进行,最终根据仿真验证结果确认实现编解码功能。非常感谢芯珠微电子林泉工程师及梁文锋、黎伟莲、练、杨家昌等同事的帮助,本设计的不足之处将在后续工作中改进。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186